首页 | 本学科首页   官方微博 | 高级检索  
     


Actin-dependent chloroplast anchoring is regulated by Ca(2+)-calmodulin in spinach mesophyll cells
Authors:Takamatsu Hideyasu  Takagi Shingo
Affiliation:Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan. hideyasu@bio.sci.osaka-u.ac.jp
Abstract:Chloroplasts are actively anchored at the appropriate intracellular regions to maintain advantageous distribution patterns under specific environmental conditions. Redistribution of chloroplasts is accompanied by their de-anchoring and re-anchoring, respectively, from and to the cortical cytoplasm. In spinach mesophyll cells, high-intensity blue light and Ca(2+) treatment induced the disappearance of the meshwork-like array of actin filaments surrounding chloroplasts, which was suppressed by a calmodulin antagonist. Regulatory mechanisms of chloroplast anchoring were investigated using plasma membrane (PM) ghosts, on which the cortical cytoplasm underlying the PM was exposed. Addition of an actin-depolymerizing reagent or > 1 μM Ca(2+) induced detachment of a substantial number of chloroplasts from the PM ghosts concomitant with disordered actin organization. Calmodulin antagonists and anti-calmodulin antibodies negated the effects of Ca(2+). In addition, Ca(2+)-induced detachment of chloroplasts was no longer evident on the calmodulin-depleted PM ghosts. We propose that chloroplasts are anchored onto the cortical cytoplasm through interaction with the actin cytoskeleton, and that Ca(2+)-calmodulin-sensitized de-anchoring of chloroplasts is a critical early step in chloroplast redistribution induced by environmental stimuli.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号