首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Targeted sequencing of a complex locus within a polyploid genome using reduced representation libraries
Authors:Joann Conner  Sirjan Sapkota  Stéphane Deschamps  Kevin Fengler  Mark Cigan  Peggy Ozias-Akins
Institution:1.Department of Horticulture,University of Georgia – Tifton Campus,Tifton,USA;2.DuPont Pioneer,Wilmington,USA;3.DuPont Pioneer,Johnston,USA
Abstract:Apospory is a form of gametophytic apomixis in which embryos develop from unreduced embryo sacs derived from aposporous initials formed from nucellar cells of ovules to produce offspring genetically identical to the female plant. Apospory in Pennisetum squamulatum (8X) and Cenchrus ciliaris (4X) is a dominant trait controlled by a physically large, hemizygous, heterochromatic chromosomal block called the apospory-specific genomic region (ASGR). Both apomictic species are polyploid, with genome sizes estimated at 2600 to 3000 Mbp for C. ciliaris and 9400 to 10,300 Mbp for P. squamulatum. A study was conducted to determine whether duplex-specific nuclease (DSN) normalization of DNA from apomictic and sexual genotypes would reduce repetitive sequences and allow bioinformatic analysis to predict sequence contigs derived from the ASGR. DSN libraries from four genotypes were sequenced using Illumina® HiSeq 2000 technology. 39 out of 44 tested sequence characterized amplified region (SCAR) markers from in silico predicted ASGR-specific contigs were mapped to the ASGR in a Pennisetum F1 mapping population. Eighteen SCARs showed apomict-specific amplification in C. ciliaris. The successful mapping of ~90 % of the SCAR markers to the ASGR in the Pennisetum F1 mapping population shows that DSN normalization and Illumina sequencing can be used as an effective strategy for targeted mapping of a physically large locus rich in repetitive sequences, like that of the ASGR.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号