首页 | 本学科首页   官方微博 | 高级检索  
   检索      


DNA damage by the sulfate radical anion: hydrogen abstraction from the sugar moiety versus one-electron oxidation of guanine
Authors:Marina Roginskaya  Reza Mohseni  Derrick Ampadu-Boateng  Yuriy Razskazovskiy
Institution:1. Department of Chemistry, East Tennessee State University, Johnson City, TN, USA;2. roginska@etsu.edu;4. Department of Chemistry, Virginia Commonwealth University, Richmond, VA, USA;5. Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN, USA
Abstract:The products of oxidative damage to double-stranded (ds) DNA initiated by photolytically generated sulfate radical anions SO4?? were analyzed using reverse-phase (RP) high-performance liquid chromatography (HPLC). Relative efficiencies of two major pathways were compared: production of 8-oxoguanine (8oxoG) and hydrogen abstraction from the DNA 2-deoxyribose moiety (dR) at C1,′ C4,′ and C5′ positions. The formation of 8oxoG was found to account for 87% of all quantified lesions at low illumination doses. The concentration of 8oxoG quickly reaches a steady state at about one 8oxoG per 100 base pairs due to further oxidation of its products. It was found that another guanine oxidation product identified as 2-amino-5-(2′-alkylamino)-4H-imidazol-4-one (X) was released in significant quantities from its tentative precursor 2-amino-5-(2′-deoxy-β-d-erythro-pentofuranosyl)amino]-4H-imidazol-4-one (dIz) upon treatment with primary amines in neutral solutions. The linear dose dependence of X release points to the formation of dIz directly from guanine and not through oxidation of 8oxoG. The damage to dR was found to account for about 13% of the total damage, with majority of lesions (33%) originating from the C4′ oxidation. The contribution of C1′ oxidation also turned out to be significant (17% of all dR damages) despite of the steric problems associated with the abstraction of the C1′-hydrogen. However, no evidence of base-to-sugar free valence transfer as a possible alternative to direct hydrogen abstraction at C1′ was found.
Keywords:DNA  imidazolone  oxidative damage  8-oxoguanine  sulfate radicals
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号