首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synthesis,cyclooxygenase inhibition and anti-inflammatory evaluation of new 1,3,5-triaryl-4,5-dihydro-1H-pyrazole derivatives possessing methanesulphonyl pharmacophore
Authors:Khaled R A Abdellatif  Mohammed T Elsaady  Salah A Abdel-Aziz  Ahmed H A Abusabaa
Institution:1. Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef, Egypt, khaled.ahmed@pharm.bsu.edu.eg;3. Department of Medicinal Chemistry, Beni-Suef University, Beni-Suef, Egypt, and;4. Department of Pharmaceutical Medicinal Chemistry, Al-Azhar University, Assuit, Egypt
Abstract:A new series of 1,3,5-triaryl-4,5-dihydro-1H-pyrazole derivatives 13ap were synthesized via aldol condensation of 3/4-nitroacetophenones with appropriately substituted aldehydes followed by cyclization of the formed chalcones with 4-methanesulfonylphenylhydrazine hydrochloride. All the synthesized compounds were evaluated for their cyclooxygenase (COX) inhibition, anti-inflammatory activity and ulcerogenic liability. All compounds were more potent inhibitors for COX-2 than COX-1. While most compounds showed good anti-inflammatory activity, compounds 13d, 13f, 13k and 13o were the most potent derivatives (ED50?=?66.5, 73.4, 79.8 and 70.5?μmol/kg, respectively) in comparison with celecoxib (ED50?=?68.1?μmol/kg). Compounds 13d, 13f, 13k and 13o (ulcer index?=?3.89, 4.86, 4.96 and 3.92, respectively) were 4–6 folds less ulcerogenic than aspirin (ulcer index?=?22.75) and showed approximately ulceration effect similar to celecoxib (ulcer index?=?3.35). In addition, molecular docking studies were performed for compounds 13d, 13f, 13k and 13o inside COX-2 active site which showed acceptable binding interactions (affinity in kcal/mol ?2.1774, ?6.9498) in comparison with celecoxib (affinity in kcal/mol ?6.5330).
Keywords:Anti-inflammatory  cyclooxygenase inhibition  dihydropyrazole
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号