首页 | 本学科首页   官方微博 | 高级检索  
     


Catalysis of tyrosyl-adenylate formation by the human tyrosyl-tRNA synthetase
Authors:Austin Joseph  First Eric A
Affiliation:Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, Louisiana 71130, USA.
Abstract:Although the active site residues in the Bacillus stearothermophilus and human tyrosyl-tRNA synthetases are largely conserved, several differences exist between the two enzymes. In particular, three amino acids that stabilize the transition state for the activation of tyrosine in B. stearothermophilus tyrosyl-tRNA synthetase (Cys-35, His-48, and Lys-233) are not present in the human enzyme. This raises the question of whether the activation energy for the tyrosine activation step is higher for the human tyrosyl-tRNA synthetase than for the B. stearothermophilus enzyme. In this paper, we demonstrate that intrinsic fluorescence changes can be used to monitor the pre-steady state kinetics of human tyrosyl-tRNA synthetase. In contrast to the B. stearothermophilus enzyme, catalysis of the tyrosine activation step is potassium-dependent in the human tyrosyl-tRNA synthetase. Specifically, potassium increases the forward rate constant for tyrosine activation 260-fold in the human tyrosyl-tRNA synthetase. Comparison of the forward rate constants for catalysis of tyrosine activation by the human and B. stearothermophilus enzymes indicates that despite differences in their active sites and the potassium requirement of the human enzyme, the activation energies for tyrosine activation are identical for the two enzymes. The results of these investigations suggest that differences exist between the active sites of the bacterial and human tyrosyl-tRNA synthetases that could be exploited to design antimicrobials that target the bacterial enzyme.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号