首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Information processing in the femur-tibia control loop of stick insects
Authors:A E Sauer  R B Driesang  A Büschges  U Bässler
Institution:(1) FB Biologie, Universität Kaiserslautern, D-67653 Kaiserslautern, Germany
Abstract:The complicated response characteristics of the identified nonspiking interneuron type E4 upon elongation stimuli to the femoral chordotonal organ (fCO) can be obtained by a computer simulation using the neuronal network simulator BioSim, if the following assumptions were introduced: (1) The interneurons receive direct excitatory input from position- and velocity-sensitive fCO afferents but also, in parallel delayed inhibition from the same velocity-sensitive afferents. (2) Position-sensitive afferents in part show adaptation with a rather long time-constant. A subsequent experimental analysis demonstrated that all these assumptions fit the reality: (1) Interneurons of type E4 receive direct excitatory input from fCO afferents. (2) Interneurons of type E4 are affected by velocity dependent delayed inhibitory inputs from the fCO. (3) The fCO does contain adapting position-sensitive sensory neurons, which have not been described before. The described principle of the information processing is also able to generate the response in interneurons of type E6 with less steep amplitude-velocity characteristic due to a different weighting of the direct excitation and delayed inhibition.Abbreviations EPSP excitatory postsynaptic potential - FETi fast extensor tibiae motor neuron - fCO femoral chordotonal organ - FT-control loop femur-tibia control loop - IPSP inhibitory postsynaptic potential - SETi slow extensor tibiae motor neuron
Keywords:Nonspiking interneuron  Neuronal network  Posture control  Simulation  Parliamentary principle
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号