首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of superoxide in the N-oxidation of N-(2-methyl-1-phenyl-2-propyl)hydroxylamine by the rat liver cytochrome P-450 system
Authors:J D Duncan  E W Di Stefano  G T Miwa  A K Cho
Abstract:The N-oxidation of N-(2-methyl-1-phenyl-2-propyl)hydroxylamine (N-hydroxyphentermine, MPPNHOH) and the N-hydroxylation of 2-methyl-1-phenyl-2-propylamine (phentermine) by reconstituted systems that contained cytochromes P-450 purified from rat liver microsomes were demonstrated. The oxidation of MPPNHOH, but not of phentermine, could also be mediated by a superoxide and hydrogen peroxide generating system that contained xanthine and xanthine oxidase. Superoxide dismutase completely inhibited the oxidation of MPPNHOH by the xanthine/xanthine oxidase system and inhibited by 70% the oxidation mediated by a reconstituted cytochrome P-450 oxidase system. The majority of the microsomal oxidation was inhibited by an antibody raised against the major isozyme of cytochrome P-450 purified from livers of phenobarbital-pretreated rats. 2-Methyl-2-nitroso-1-phenylpropane (MPPNO) was found to be an intermediate in the overall oxidation of MPPNHOH to 2-methyl-2-nitro-1-phenylpropane (MPPNO2). Superoxide dismutase appeared to inhibit the first step, the conversion of MPPNHOH to MPPNO. These observations are accounted for by a sequence of two mechanistically distinct P-450-mediated oxidations. In the first reaction, N-hydroxylation of phentermine occurs by a normal cytochrome P-450 pathway. The formed hydroxylamine then uncouples the cytochrome P-450 system to generate superoxide and hydrogen peroxide. The superoxide oxidizes MPPNHOH to MPPNO which is then oxidized to MPPNO2, the ultimate product. This superoxide-mediated oxidation represents another pathway for N-oxidation by cytochrome P-450.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号