首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced ROS production by NADPH oxidase is correlated to changes in antioxidant enzyme activity in human heart failure
Authors:Elisabetta Borchi  Valentina Bargelli  Francesca Stillitano  Carla Giordano  Mariangela Sebastiani  Paolo Antonio Nassi  Giulia d'Amati  Elisabetta Cerbai  Chiara Nediani
Affiliation:1. Department of Biochemical Sciences, University of Florence, Viale Morgagni, 50, 50134 Florence, Italy;2. Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy;3. Department of Experimental Medicine, La Sapienza University of Rome, Italy
Abstract:In pathological conditions, the balance between reactive oxygen species (ROS) and antioxidants may shift toward a relative increase of ROS, resulting in oxidative stress. Conflicting data are available on antioxidant defenses in human failing heart and they are limited to the left ventricle. Thus, we aimed to investigate and compare the source of oxidant and antioxidant enzyme activities in the right (RV) and left (LV) ventricles of human failing hearts. We found a significant increase in superoxide production only by NADPH oxidase in both failing ventricles, more marked in RV. Despite unchanged mRNA or protein expression, catalase (CAT) and glutathione peroxidase (GPx) activities were increased, and their increases reflected the levels of Tyr phosphorylation of the respective enzyme. Manganese superoxide dismutase (Mn-SOD) activity appeared unchanged. The increase in NADPH oxidase-dependent superoxide production positively correlated with the activation of both CAT and GPx. However, the slope of the linear correlation (m) was steeper in LV than in RV for GPx (LV: m = 2.416; RV: m = 1.485) and CAT (LV: m = 1.007; RV: m = 0.354). Accordingly, malondialdehyde levels, an indirect index of oxidative stress, were significantly higher in the RV than LV. We conclude that in human failing RV and LV, oxidative stress is associated with activation of antioxidant enzyme activity. This activation is likely due to post-translational modifications and more evident in LV. Overall, these findings suggest a reduced protection of RV against oxidative stress and its potential contribution to the progression toward overt heart failure.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号