首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High-throughput isotopic analysis of RNA microarrays to quantify microbial resource use
Authors:Xavier Mayali  Peter K Weber  Eoin L Brodie  Shalini Mabery  Paul D Hoeprich  Jennifer Pett-Ridge
Institution:1.Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA;2.Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Abstract:Most microorganisms remain uncultivated, and typically their ecological roles must be inferred from diversity and genomic studies. To directly measure functional roles of uncultivated microbes, we developed Chip-stable isotope probing (SIP), a high-sensitivity, high-throughput SIP method performed on a phylogenetic microarray (chip). This approach consists of microbial community incubations with isotopically labeled substrates, hybridization of the extracted community rRNA to a microarray and measurement of isotope incorporation—and therefore substrate use—by secondary ion mass spectrometer imaging (NanoSIMS). Laboratory experiments demonstrated that Chip-SIP can detect isotopic enrichment of 0.5 atom % 13C and 0.1 atom % 15N, thus permitting experiments with short incubation times and low substrate concentrations. We applied Chip-SIP analysis to a natural estuarine community and quantified amino acid, nucleic acid or fatty acid incorporation by 81 distinct microbial taxa, thus demonstrating that resource partitioning occurs with relatively simple organic substrates. The Chip-SIP approach expands the repertoire of stable isotope-enabled methods available to microbial ecologists and provides a means to test genomics-generated hypotheses about biogeochemical function in any natural environment.
Keywords:biogeochemistry  marine  microarray  microbial function  NanoSIMS  stable isotope probing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号