首页 | 本学科首页   官方微博 | 高级检索  
     


A spiking neural network model of the midbrain superior colliculus that generates saccadic motor commands
Authors:Bahadir?Kasap  author-information"  >  author-information__contact u-icon-before"  >  mailto:b.kasap@donders.ru.nl"   title="  b.kasap@donders.ru.nl"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author  author-information__orcid u-icon-before icon--orcid u-icon-no-repeat"  >  http://orcid.org/---"   itemprop="  url"   title="  View OrcID profile"   target="  _blank"   rel="  noopener"   data-track="  click"   data-track-action="  OrcID"   data-track-label="  "  >View author&#  s OrcID profile,A.?John?van?Opstal
Affiliation:1.Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour,Radboud University,Nijmegen,The Netherlands
Abstract:Single-unit recordings suggest that the midbrain superior colliculus (SC) acts as an optimal controller for saccadic gaze shifts. The SC is proposed to be the site within the visuomotor system where the nonlinear spatial-to-temporal transformation is carried out: the population encodes the intended saccade vector by its location in the motor map (spatial), and its trajectory and velocity by the distribution of firing rates (temporal). The neurons’ burst profiles vary systematically with their anatomical positions and intended saccade vectors, to account for the nonlinear main-sequence kinematics of saccades. Yet, the underlying collicular mechanisms that could result in these firing patterns are inaccessible to current neurobiological techniques. Here, we propose a simple spiking neural network model that reproduces the spike trains of saccade-related cells in the intermediate and deep SC layers during saccades. The model assumes that SC neurons have distinct biophysical properties for spike generation that depend on their anatomical position in combination with a center–surround lateral connectivity. Both factors are needed to account for the observed firing patterns. Our model offers a basis for neuronal algorithms for spatiotemporal transformations and bio-inspired optimal controllers.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号