首页 | 本学科首页   官方微博 | 高级检索  
     


Time-minimized determination of ribosome and tRNA levels in bacterial cells using flow field-flow fractionation
Authors:Arfvidsson Cecilia  Wahlund Karl Gustav
Affiliation:Department of Technical Analytical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
Abstract:The evaluation of the translation capacity of cells that produce recombinant proteins can be made by monitoring their ribosomal composition. In a previous use of asymmetrical flow field-flow fractionation (AsFlFFF) for this purpose the overall analysis time was more than 1 h and 40 min, based on a standard protocol for cell harvest, washing, cell disruption, and the final 8-min AsFlFFF determination of ribosome and subunits. In the present work the overall analysis time was reduced to 16 min. The washing step was deleted and a time-consuming freeze-thaw cycle. Cell disruption was obtained by a time-minimized lysozyme and detergent treatment for 1.5 min, respectively. The ribosomal material was finally fractionated and quantified in only 6 min, without previous centrifugation, using AsFlFFF. The great time reduction will enable the future use of AsFlFFF at-line to a growing cell cultivation, continuously monitoring the change in ribosomal composition or in other applications requiring high sample throughput. To demonstrate the high efficiency of the method the ribosome and tRNA composition in an Escherichia coli cultivation was monitored every half an hour, giving 18 measurements across the complete growth curve, a frequency of data enough to make decisions about induction or termination of the cultivation.
Keywords:Asymmetrical flow field-flow fractionation (AsFlFFF)   Ribosome   tRNA   Escherichia coli   Biotechnology   Optimization of protein synthesis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号