Calcium phosphate precipitation in the sarcoplasmic reticulum reduces action potential-mediated Ca2+ release in mammalian skeletal muscle |
| |
Authors: | Dutka T L Cole L Lamb G D |
| |
Affiliation: | Dept. of Zoology, La Trobe Univ., Melbourne 3086, Victoria, Australia. t.dutka@latrobe.edu.au |
| |
Abstract: | During vigorous exercise, Pi concentration levels within the cytoplasm of fast-twitch muscle fibers may reach 30 mM. Cytoplasmic Pi may enter the sarcoplasmic reticulum (SR) and bind to Ca2+ to form a precipitate (CaPi), thus reducing the amount of releasable Ca2+. Using mechanically skinned rat fast-twitch muscle fibers, which retain the normal action potential-mediated Ca2+ release mechanism, we investigated the consequences of Pi exposure on normal excitation-contraction coupling. The total amount of Ca2+ released from the SR by a combined caffeine/low-Mg2+ concentration stimulus was reduced by 20%, and the initial rate of force development slowed after 2-min exposure to 30 mM Pi (with or without the presence creatine phosphate). Peak (50 Hz) tetanic force was also reduced (by 25% and 45% after 10 and 30 mM Pi exposure, respectively). Tetanic force responses produced after 30 mM Pi exposure were nearly identical to those observed in the same fiber after depletion of total SR Ca2+ by 35%. Ca2+ content assays revealed that the total amount of Ca2+ in the SR was not detectably changed by exposure to 30 mM Pi, indicating that Ca2+ had not leaked from the SR but instead formed a precipitate with the Pi, reducing the amount of available Ca2+ for rapid release. These results suggest that CaPi precipitation that occurs within the SR could contribute to the failure of Ca2+ release observed in the later stages of metabolic muscle fatigue. They also demonstrate that the total amount of Ca2+ stored in the SR cannot drop substantially below the normal endogenous level without reducing tetanic force responses. muscle fatigue; excitation-contraction coupling |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
| 点击此处可从《American journal of physiology. Cell physiology》浏览原始摘要信息 |
|
点击此处可从《American journal of physiology. Cell physiology》下载全文 |
|