首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Responses to Saturation Deficit in a Stand of Groundnut (Arachis hypogaea L.) 1. Water Use
Authors:SIMMONDS  L P; ONG  C K
Institution:University of Nottingham School of Agriculture, Sutton Bonington Loughborough, Leics. LE12 5RD, UK
Abstract:Stands of groundnut were grown in computer-controlled glasshouseson water stored in an undisturbed soil profile. The maximumsaturation vapour pressure deficit (D) of the air was either1.0, 2.0, 2.5, or 3.0 kPa, and the mean air temperature was27 °C. Transpiration (E), determined from the soil water balance, wasstrongly dependent on D, because D influenced both the fractionof incident solar radiation intercepted by foliage (f) and thetranspiration rate per unit f (E/f). When D exceeded 2 kPa,canopy expansion was restricted and f reduced during early growth,but differences in f diminished as the canopies closed. E/fincreased with D, implying that any restriction of transpirationthrough stomatal closure at large D was outweighted by a steeperhumidity gradient from leaf to air. In all treatments E/f decreased as the soil profile dried. Saturationdeficit per se had little influence on the proportional reductionin E/f with time, even though soil water deficit was considerablygreater at large D. This lack of response occurred because plantscompensated for the greater evaporative demand by extractinglarger amounts of water from deep in the profile. Groundnut, Arachis hypogaea L., humidity, rooting depth, transpiration
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号