首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Calcium-dependent spontaneously reversible remodeling of brain mitochondria
Authors:Shalbuyeva Natalia  Brustovetsky Tatiana  Bolshakov Alexey  Brustovetsky Nickolay
Institution:Department of Pharmacology and Toxicology, Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
Abstract:An exposure of cultured hippocampal neurons expressing mitochondrially targeted enhanced yellow fluorescent protein to excitotoxic glutamate resulted in reversible mitochondrial remodeling that in many instances could be interpreted as swelling. Remodeling was not evident if glutamate receptors were blocked with MK801, if Ca(2+) was omitted or substituted for Sr(2+) in the bath solution, if neurons were treated with carbonylcyanide p-trifluoromethoxyphenylhydrazone to depolarize mitochondria, or if neurons were pretreated with cyclosporin A or N-methyl-4-isoleucine-cyclosporin (NIM811) to inhibit the mitochondrial permeability transition. In the experiments with isolated brain synaptic or nonsynaptic mitochondria, Ca(2+) triggered transient, spontaneously reversible cyclosporin A-sensitive swelling closely resembling remodeling of organelles in cultured neurons. The swelling was accompanied by the release of cytochrome c, Smac/DIABLO, Omi/HtrA2, and AIF but not endonuclease G. Depolarization with carbonylcyanide p-trifluoromethoxyphenylhydrazone or inhibition of the Ca(2+) uniporter with Ru360 prevented rapid onset of the swelling. Sr(2+) depolarized mitochondria but failed to induce swelling. Neither inhibitors of the large conductance Ca(2+)-activated K(+) channel (charybdotoxin, iberiotoxin, quinine, and Ba(2+)) nor inhibitors of the mitochondrial ATP-sensitive K(+) channel (5-hydroxydecanoate and glibenclamide) suppressed swelling. Quinine, dicyclohexylcarbodiimide, and Mg(2+), inhibitors of the mitochondrial K(+)/H(+) exchanger, as well as external alkalization inhibited a recovery phase of the reversible swelling. In contrast to brain mitochondria, liver and heart mitochondria challenged with Ca(2+) experienced sustained swelling without spontaneous recovery. The proposed model suggests an involvement of the Ca(2+)-dependent transient K(+) influx into the matrix causing mitochondrial swelling followed by activation of the K(+)/H(+) exchanger leading to spontaneous mitochondrial contraction both in situ and in vitro.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号