首页 | 本学科首页   官方微博 | 高级检索  
     


Deep learning representations to support COVID-19 diagnosis on CT slices
Authors:Josué   Ruano,John Arcila,David Romo-Bucheli,Carlos Vargas,Jefferson Rodrí  guez,Ó  scar Mendoza,Miguel Plazas,Lola Bautista,Jorge Villamizar,Gabriel Pedraza,Alejandra Moreno,Diana Valenzuela,Lina Vá  squez,Carolina Valenzuela-Santos,Paú  l Camacho,Daniel Mantilla,Fabio Martí  nez
Abstract:Introduction: The coronavirus disease 2019 (COVID-19) has become a significant public health problem worldwide. In this context, CT-scan automatic analysis has emerged as a COVID-19 complementary diagnosis tool allowing for radiological finding characterization, patient categorization, and disease follow-up. However, this analysis depends on the radiologist’s expertise, which may result in subjective evaluations.Objective: To explore deep learning representations, trained from thoracic CT-slices, to automatically distinguish COVID-19 disease from control samples.Materials and methods: Two datasets were used: SARS-CoV-2 CT Scan (Set-1) and FOSCAL clinic’s dataset (Set-2). The deep representations took advantage of supervised learning models previously trained on the natural image domain, which were adjusted following a transfer learning scheme. The deep classification was carried out: (a) via an end-to-end deep learning approach and (b) via random forest and support vector machine classifiers by feeding the deep representation embedding vectors into these classifiers.Results: The end-to-end classification achieved an average accuracy of 92.33% (89.70% precision) for Set-1 and 96.99% (96.62% precision) for Set-2. The deep feature embedding with a support vector machine achieved an average accuracy of 91.40% (95.77% precision) and 96.00% (94.74% precision) for Set-1 and Set-2, respectively.Conclusion: Deep representations have achieved outstanding performance in the identification of COVID-19 cases on CT scans demonstrating good characterization of the COVID-19 radiological patterns. These representations could potentially support the COVID-19 diagnosis in clinical settings.
Keywords:Coronavirus infections/diagnosis   tomography   X-ray computed   deep learning
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号