首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Close relationship between leaf life span and seedling relative growth rate in temperate hardwood species
Authors:Kenji Seiwa  Kihachiro Kikuzawa
Institution:(1) Laboratory of Forest Ecology, Graduate School of Agricultural Science, Tohoku University, Naruko Miyagi, 989-6711, Japan;(2) Laboratory of Ecology, Department of Environmental Science, Ishikawa Prefectural University, Nonoichi Ishikawa, 921-8836, Japan
Abstract:The life span of resource-acquiring organs (leaves, shoots, fine roots) is closely associated with species successional position and environmental resource availability. We examined to what extent leaf life span is related to inter- and intraspecific variation in seedling relative growth rate (RGR). We examined relationships between relative growth rate in mass (RGRM) or height (RGRH) and leaf life span, together with classical RGRM components net assimilation rate (NAR), specific leaf area (SLA), leaf weight ratio (LWR), and leaf area ratio (LAR)] for seedlings of five hardwood species of different successional position across a wide range of environmental resource availability, including the presence or absence of leaf litter in shaded forest understory, small canopy gaps, and large canopy gaps. Both SLA and LAR were negatively correlated with RGRM along the environmental gradient for all species. However, positive correlations were observed among species within microsites, indicating that these two components cannot consistently explain the variation in RGRM. Both NAR and LWR affect interspecific, but not intraspecific, variation in RGRM. Leaf life span was negatively correlated with either RGRM or RGRH in both inter- and intraspecific comparisons. Species with short-lived, physiologically active leaves have high growth rates, particularly in resource-rich environments. Consequently, leaf life span is a good predictor of seedling RGR. Leaf life span affects plant performance and has a strong and consistent effect on tree seedling growth, even among contrasting environments.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号