Oxygen regulation of the epithelial Na channel in the collecting duct |
| |
Authors: | Husted Russell F Lu Hongyan Sigmund Rita D Stokes John B |
| |
Affiliation: | Fraternal Order of Eagles Diabetes Research Center, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA. |
| |
Abstract: | The PO(2) within the kidney changes dramatically from cortex to medulla. The present experiments examined the effect of changing PO(2) on epithelial Na channel (ENaC)-mediated Na transport in the collecting duct using the mpkCCD-c14 cell line. Decreasing ambient O(2) concentration from 20 to 8% decreased ENaC activity by 40%; increasing O(2) content to 40% increased ENaC activity by 50%. The O(2) effect required several hours to develop and was not mimicked by the acid pH that developed in monolayers incubated in low-O(2) medium. Corticosteroids increased ENaC activity at each O(2) concentration; there was no interaction. The pathways for O(2) and steroid regulation of ENaC are different since O(2) did not substantially affect Sgk1, α-ENaC, Gilz, or Usp2-45 mRNA levels, genes involved in steroid-mediated ENaC regulation. The regulation of ENaC activity by these levels of O(2) appears not to be mediated by changes in hypoxia-inducible factor-1α or -2α activity or a change in AMP kinase activity. Changes in O(2) concentration had minimal effect on α- or γ-ENaC mRNA and protein levels; there were moderate effects on β-ENaC levels. However, 40% O(2) induced substantially greater total β- and γ-ENaC on the apical surface compared with 8% O(2); both subunits demonstrated a greater increase in the mature forms. The α-ENaC subunit was difficult to detect on the apical surface, perhaps because our antibodies do not recognize the major mature form. These results identify a mechanism of ENaC regulation that may be important in different regions of the kidney and in responses to changes in dietary NaCl. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|