首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In vivo tracking of the human patella.
Authors:T J Koh  M D Grabiner  R J De Swart
Institution:Department of Biomedical Engineering and Applied Therapeutics, Cleveland Clinic Foundation, OH 44196.
Abstract:The purpose of this study was to describe the dynamic, in vivo, three-dimensional tracking pattern of the patella for one normal male subject. Intracortical pins were inserted into the patella, tibia, and femur. The subject performed seated and squatting knee flexion/extension, and maximum voluntary quadriceps contractions. In addition, the vastus medialis oblique was subjected to maximal electrical stimulation. Motions of the markers attached to the intracortical pins were analyzed using an automated video system. Patellar and tibial motions were determined relative to a femoral reference system. While the tibia flexed 50 degrees from full extension (seated condition), the patella flexed 30.3 degrees, tilted laterally 10.3 degrees, and shifted laterally 8.6 mm. In general, these results show qualitative agreement with the data collected from cadaveric specimens van Kampen and Huiskes, J. orthop. Res. 8, 372-382 (1990)]. The differences present may reflect different passive constraints to patellar motions, and different relative loading of the individual quadriceps components, in our study compared to the cadaveric study. Only small differences were found between patellar motions in the seated and squatting conditions. Differences in patellar displacements produced by (1) maximal electrical stimulation of the vastus medialis oblique, and (2) maximum voluntary quadriceps contraction, at 30 degrees knee flexion and full extension, may reflect the dominant influence of passive constraints, and the vastus lateralis, on normal patellar motions. Further in vivo study of patellar tracking seems warranted to evaluate surgical and conservative interventions for patellofemoral disorders.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号