首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Enzyme induction and repression in anabolic and catabolic pathways
Authors:I C Gunsalus  A U Bertland II  L A Jacobson
Institution:(1) Chemistry Department, University of Illinois, 61801 Urbana;(2) Present address: The Biochemical Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Harvard, USA;(3) Present address: University of Pittsburgh, Pittsburgh, USA
Abstract:Summary Microorganisms have evolved enzymes which catalyze a large number of reactions in the sequences to form essential cellular constituents and liberate energy and carbon for cellular processes. Regulation of the use of energy and of the monomeric cellular precursors to the synthesis of those enzymes required under changing environmental conditions depends on the one hand on the level of end products of a reaction sequence and on the other upon the presence of the first, or early members of a reaction sequence. These cases in turn represent product repression and substrate, or substrate like, induction of enzyme formation. Though the repression system has generally been considered to operate in anabolic and the induction system in catabolic processes, the experiments presented demonstrate a role for both types of control in formation of biosynthetic and peripheral pathway enzymes. The induction of biosynthetic enzymes is shown in Pseudomonas putida, and organism with three clusters of genes for the tryptophan pathway. The repression of degradative enzymes is shown in an extended pathway of peripheral oxidation of terpenoid compounds. The enzymes for steps following conversion of neutral to non-essential acidic products are repressed as well as enzymes beyond convergence with isobutyrate formation and conversion to the succinyl and propionyl intermediates.Dedicated to C. B. van Niel on the occasion of his 70th birthday. Supported in part by grant G24037 from the National Science Foundation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号