首页 | 本学科首页   官方微博 | 高级检索  
   检索      


pH-dependent membrane fusion and vesiculation of phospholipid large unilamellar vesicles induced by amphiphilic anionic and cationic peptides.
Authors:M Murata  S Takahashi  S Kagiwada  A Suzuki  S Ohnishi
Institution:Department of Biophysics, Faculty of Sciences, Kyoto University, Japan.
Abstract:We studied fusion induced by a 20-amino acid peptide derived from the amino-terminal segment of hemagglutinin of influenza virus A/PR/8/34 Murata, M., Sugahara, Y., Takahashi, S., & Ohnishi, S. (1987) J. Biochem. (Tokyo) 102, 957-962]. To extend the study, we have prepared several water-soluble amphiphilic peptides derived from the HA peptide; the anionic peptides D4, E5, and E5L contain four and five acidic residues and the cationic peptide K5 has five Lys residues in place of the five Glu residues in E5. Fusion of egg phosphatidylcholine large unilamellar vesicles induced by these peptides is assayed by two different fluorescence methods, lipid mixing and internal content mixing. Fusion is rapid in the initial stage (12-15% within 20 s) and remains nearly the same or slightly increasing afterward. The anionic peptides cause fusion at acidic pH lower than 6.0-6.5, and the cationic peptide causes fusion at alkaline pH higher than 9.0. Leakage and vesiculation of vesicles are also measured. These peptides are bound and associated with vesicles as shown by Ficoll discontinuous gradients and by the blue shift of tryptophan fluorescence. They take an alpha-helical structure in the presence of vesicles. They become more hydrophobic in the pH regions for fusion. When the suspension is made acidic or alkaline, the vesicles aggregate, as shown by the increase in light scattering. The fusion mechanism suggests that the amphiphilic peptides become more hydrophobic by neutralization due to protonation of the carboxyl groups or deprotonation of the lysyl amino groups, aggregate the vesicles together, and interact strongly with lipid bilayers to cause fusion. At higher peptide concentrations, E5 and E5L cause fusion transiently at acidic pH followed by vesiculation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号