首页 | 本学科首页   官方微博 | 高级检索  
     


Deoxyribonucleoside triphosphate pools in Neurospora crassa: effects of histidine and hydroxyurea
Authors:Vinod K. Srivastava   Martin L. Pall  Alice L. Schroeder
Affiliation:

Program in Genetics and Cell Biology, Washington State University, Pullman, WA 99164-4350, U.S.A.

Abstract:An effective HPLC method for detecting deoxyribonucleoside triphosphates in hyphae from the fungus Neurospora crass has been developed. In rapidly growing cells the nucleotide levels vary from 11.8 pmoles/μg DNA for dGTP to 24.2 pmoles/μg DNA for dTTP. These levels fall by approximately one half in stationary-phase cultures but the ration of each pool to dGTP remains the same. The dNTP pools in conidia are at least 5-fold lower than in rapidly growing cells. The pool sizes are the same in static and shaking cultures. When the ribonucleotide reductase inhibitor, hydroxyurea (30 mM), is added to rapidly growing cultures, DNA synthesis is stopped and the dGTP pool is reduced by 39%, while the size of the other poolds remains the same. In the presence of 11 mM histadine, DNA synthesis is also stopped and the size of the dGTP pool reduced by 46% while the deoxypyrimidine pools are somewhat increased. This suggests that the toxicity of excess histidine in Neurospora may be due to its ability to interact with the ribonucleotide reductase, inactivating the enzyme. Histidine may react with free radical at the active sites, as does hydroxyurea.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号