首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Gene regulatory network inference and validation using relative change ratio analysis and time-delayed dynamic Bayesian network
Authors:Peng?Li  Email author" target="_blank">Ping?GongEmail author  Haoni?Li  Edward?J?Perkins  Nan?Wang  Email author" target="_blank">Chaoyang?ZhangEmail author
Institution:1.Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute,National Institutes of Health,Bethesda,USA;2.Badger Technical Services,LLC,San Antonio,USA;3.School of Computing,University of Southern Mississippi,Hattiesburg,USA;4.Environmental Laboratory,U.S. Army Engineer Research and Development Center,Vicksburg,USA
Abstract:The Dialogue for Reverse Engineering Assessments and Methods (DREAM) project was initiated in 2006 as a community-wide effort for the development of network inference challenges for rigorous assessment of reverse engineering methods for biological networks. We participated in the in silico network inference challenge of DREAM3 in 2008. Here we report the details of our approach and its performance on the synthetic challenge datasets. In our methodology, we first developed a model called relative change ratio (RCR), which took advantage of the heterozygous knockdown data and null-mutant knockout data provided by the challenge, in order to identify the potential regulators for the genes. With this information, a time-delayed dynamic Bayesian network (TDBN) approach was then used to infer gene regulatory networks from time series trajectory datasets. Our approach considerably reduced the searching space of TDBN; hence, it gained a much higher efficiency and accuracy. The networks predicted using our approach were evaluated comparatively along with 29 other submissions by two metrics (area under the ROC curve and area under the precision-recall curve). The overall performance of our approach ranked the second among all participating teams.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号