Abstract: | With the rapid development of network technology and parallel computing, clusters formed by connecting a large number of PCs with high-speed networks have gradually replaced the status of supercomputers in scientific research and production and high-performance computing with cost-effective advantages. The research purpose of this paper is to integrate the Kriging proxy model method and energy efficiency modeling method into a cluster optimization algorithm of CPU and GPU hybrid architecture. This paper proposes a parallel computing model for large-scale CPU/GPU heterogeneous high-performance computing systems, which can effectively describe the computing capabilities and various communication behaviors of CPU/GPU heterogeneous systems, and finally provide algorithm optimization for CPU/GPU heterogeneous clusters. According to the GPU architecture, an efficient method of constructing a Kriging proxy model and an optimized search algorithm are designed. The experimental results in this paper show that the construction of the Kriging proxy model can obtain a 220 times speedup ratio, and the search algorithm can reach an 8 times speedup ratio. It can be seen that this heterogeneous cluster optimization algorithm has high feasibility. |