首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Transient appearance of photolyase-induced break-sensitive sites in the DNA of ultraviolet light-irradiated Syrian hamster fetal cells
Authors:M Pirsel  J A DiPaolo  J Doniger
Institution:Laboratory of Biology, National Cancer Institute, Bethesda, MD 20892.
Abstract:Syrian hamster fetal fibroblasts (HFC) were examined for photolyase-induced break-sensitive sites after ultraviolet light (UV) exposure and growth. These sites, observed in excision-defective human xeroderma pigmentosum (XP) cells, are due to cleavage of the internal phosphodiester bond of UV-induced pyrimidine dimers. Excision-inefficient HFC acquired photolyase-induced break-sensitive sites during incubation after UV (10 J/m2). However, these were observed transiently, with a maximum of 5% of the pyrimidine dimers at 9 h post UV; by 18 h they were undetectable. Caffeine (1 mM) delayed the peak of photolyase-induced break-sensitive sites by 2 h. In human XP cells photolyase-induced break-sensitive sites accumulate to a plateau level of about 20% of the pyrimidine dimers. The present results extend to rodent cells the observation that cleavage of the internal phosphodiester bond of pyrimidine dimers may be an early step in their excision repair. Furthermore, the data suggest that photolyase-induced break-sensitive sites might be necessary for replication bypass at pyrimidine dimers.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号