首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Xoom is maternally stored and functions as a transmembrane protein for gastrulation movement in Xenopus embryos
Authors:Hasegawa K  Sakurai N  Kinoshita T
Institution:Developmental Biology, Faculty of Science, Kwansei Gakuin University, 1-1-155 Uegahara, Nishinomiya, Hyogo 662-8501, Japan.
Abstract:Xoom has been identified as a novel gene that plays an important role in gastrulation of Xenopus laevis embryo. Although Xoom is actively transcribed during oogenesis, distribution and function of its translation product have not yet been clarified. In the present study, the polyclonal antibody raised against Xoom was generated to investigate a behavior of Xoom protein. Anti-Xoom antibodies revealed that there are two forms of Xoom protein in Xenopus embryos: (i) a 45 kDa soluble cytoplasmic form; and (ii) a 44 kDa membrane-associated form. Two forms of Xoom protein were ubiquitously detected from unfertilized egg to tadpole stage, with a qualitative peak during blastula and gastrula stages. Immunohistochemical examination showed that Xoom protein is maternally stored in the animal subcortical layer and divided into presumptive ectodermal cells during cleavage stages. Enzymatic digestion of membrane protein and immunologic detection of Xoom showed that Xoom exists as a membrane-associated protein. To examine a function of Xoom protein, anti-Xoom antibodies were injected into blastocoele of stage 7 blastula embryo. Anti-Xoom antibodies caused gastrulation defect in a dose- dependent manner. These results suggest that maternally prepared Xoom protein is involved in gastrulation movement on ectodermal cells.
Keywords:gastrulation              Xenopus            Xoom
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号