首页 | 本学科首页   官方微博 | 高级检索  
     


Substrate dependence of the postischemic cardiomyocyte recovery: Dissociation between functional, metabolic and injury markers
Authors:Cindy Tissier  David Vandroux  Lisa Devillard  Amandine Brochot  Daniel Moreau  Luc Rochette  Pierre Athias
Affiliation:(1) Laboratory of Experimental Cardiovascular Physiopathology and Pharmacology, IFR n"compfn" 100, Institute of Cardiovascular Research, University Hospital Center, Dijon, France;(2) Laboratory of Experimental Cardiovascular Physiopathology and Pharmacology (Institute of Cardiovascular Research), University Hospital Center, 2, bd Mal de Lattre de Tassigny, 21034 Dijon, Cedex, France
Abstract:Defining the substrate that influences the most favourably the myocardial post-ischemic recovery is subject of debates, due to dissociation between functional and biochemical benefits. Hence, we studied the effects of either glucose or different fatty acids on the functional and metabolic recovery of post-ischemic cardiomyocytes in a substrate-free hypoxia model of simulated ischemia-reperfusion. Rat cardiomyocytes were submitted to a 2.5 h simulated ischemia followed by a 2 h reoxygenation without substrate (control), or with either glucose, octanoic acid, oleic acid, or elaidic acid. During simulated ischemia, electromechanical function gradually disappeared while the cellular viability and mitochondrial function declined. During control simulated reperfusion, cardiomyocytes recovered near normal function but a significant reduction in the action potential amplitude and rate persisted. The addition of glucose or oleic acid during simulated reperfusion promoted a faster, better and sustain functional recovery. Amongst the fatty acids, the functional recovery was slower with elaidic and octanoic acids as compared with oleic acid. The mitochondrial function was better improved during simulated reperfusion with glucose than with the tested fatty acids, among which elaidic acid was the less unfavourable. Paradoxically, the addition of whichever substrate during simulated reperfusion tended to worsen the cellular viability. Thus, cardiomyocytes recovery strongly relies on the characteristics of the substrate supplied at the onset of simulated reperfusion: glucidic or lipidic nature, chain-length, insaturation degree. Moreover, these data suggest that defining the appropriateness of a given substrate for the post-ischemic cardiomyocyte recovery is closely related to the functional and the biological endpoints in consideration.
Keywords:cardiomyocyte  cell culture  cellular viability  electrophysiology  metabolic substrates  mitochondrial function  simulated ischemia-reperfusion
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号