首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Functional coupling between enzymes of the chromaffin granule membrane
Authors:L M Wakefield  A E Cass  G K Radda
Abstract:The reactions of cytochrome b561 with other redox-active components of the adrenal chromaffin granule were examined using optical difference spectroscopy. It was shown that there is no direct electron transfer between the cytochrome and dopamine beta-hydroxylase, but that in the presence of ascorbate, turnover of dopamine beta-hydroxylase causes an oxidation of the cytochrome, which is partially reversed by the action of the mitochondrial NADH:A-. oxidoreductase. Thus, these three proteins may be functionally coupled via ascorbate. A quantitative study of the relationship between the redox state of the cytochrome and the ascorbate radical concentration measured by EPR showed that ascorbate reduces the cytochrome in a one-electron transfer reaction. Generation of a proton electrochemical gradient across the granule membrane causes only a small (20 mV) increase in the cytochrome midpoint potential suggesting the cytochrome is not a proton pump. The data are consistent with a model in which cytochrome b561, by reacting with ascorbate or ascorbate free radical on either side of the granule membrane, could couple the ascorbate-consuming reaction of the dopamine beta-hydroxylase inside the chromaffin granule to the ascorbate-regenerating reaction of the NADH:A-. oxidoreductase on the outer mitochondrial membrane. The H+-ATPase of the granule membrane could both drive the flow of electrons in the direction from cytosol to granule and replenish protons consumed by the turnover of dopamine beta-hydroxylase inside the granule.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号