Mistranslation induced by streptomycin provokes a RecABC/RuvABC-dependent mutator phenotype in Escherichia coli cells. |
| |
Authors: | Sergey Balashov M Zafri Humayun |
| |
Affiliation: | Department of Microbiology and Molecular Genetics, UMDNJ - New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA. |
| |
Abstract: | Translational stress-induced mutagenesis (TSM) refers to the mutator phenotype observed in Escherichia coli cells expressing a mutant allele (mutA or mutC) of the glycine tRNA gene glyV (or glyW). Because of an anticodon mutation, expression of the mutA allele results in low levels of Asp-->Gly mistranslation. The mutA phenotype does not require lexA-regulated SOS mutagenesis functions, and appears to be suppressed in cells defective for RecABC-dependent homologous recombination functions. To test the hypothesis that the TSM response is mediated by non-specific mistranslation rather than specific Asp-->Gly misreading, we asked if streptomycin (Str), an aminoglycoside antibiotic known to promote mistranslation, can provoke a mutator phenotype. We report that Str induces a strong mutator phenotype in cells bearing certain alleles of rpsL, the gene encoding S12, an essential component of the ribosomal 30 S subunit. The phenotype is strikingly similar to that observed in mutA cells in its mutational specificity, as well as in its requirement for RecABC-mediated homologous recombination functions. Expression of Str-inducible mutator phenotype correlates with mistranslation efficiency in response to Str. Thus, mistranslation in general is able to induce the TSM response. The Str-inducible mutator phenotype described here defines a new functional class of rpsL alleles, and raises interesting questions on the mechanism of action of Str, and on bacterial response to antibiotic stress. |
| |
Keywords: | replication translation fidelity ribosome recombination |
本文献已被 ScienceDirect 等数据库收录! |
|