首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Rotational relaxation of macromolecules determined by dynamic light scattering. II. Temperature dependence for DNA
Authors:K S Schmitz  J M Schurr
Abstract:Correlation functions have been determined for the fluctuating intensity of the depolarized component of forward-scattered laser light from solutions of DNA. The molecular correlation function of calf thymus DNA (mol wt ~15 × 106) appears to exhibit a longest relaxation time (τ25,w, ~ 18 msec) close to what one would predict from the flowdichroism measurements of Callis and Davidson and, in addition, manifests a spectrum of faster times down to tenths of milliseconds. Furthermore, a major fraction of the amplitude of fluctuations in the angular distribution of segment axes is relaxed on a very much shorter time scale (of the order of 20 microseconds) that appears to be relatively insensitive to molecular weight of the DNA, or to near-melting temperatures. The temperature profile of the longest relaxation time has been obtained and found to exhibit a peculiar spike near Tm, which, together with the absence of a corresponding spike in the (high shear) viscosity, has been interpreted as indicative of an increase in the molecular weight of the DNA in a narrow temperature region near Tm. Correlation functions for polarized light scattered at finite angles were obtained in an attempt to determine the temperature dependence of the translational diffusion coefficient. Although the data contain an extremely slow component that does not admit a simple interpretation, there is some indication of a decrease in the translational diffusion coefficient near Tm, thus supporting the notion of an aggregation occurring near Tm. Finally, a “counterion escape” mechanisn is proposed for the apparent aggregation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号