首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Influence of carotenoid molecules on the structure of the bacteriochlorophyll binding site in peripheral light-harvesting proteins from Rhodobacter sphaeroides
Authors:Gall Andrew  Cogdell Richard J  Robert Bruno
Institution:Division of Biochemistry and Molecular Biology-IBLS, University of Glasgow, Glasgow G12 8QQ, UK. andrew.gall@bio.gla.uk
Abstract:In the LH2 proteins from Rhodobacter (Rb.) sphaeroides, the hydrogen bonds between the bacteriochlorophyll (Bchl) molecules and their proteic binding sites exhibit a strong variance with respect to carotenoid content and type. In the absence of the carotenoid molecule, such as in the LH2 from Rb. sphaeroides R26.1, the void in the protein structure induces a significant reorganization of the binding site of both Bchl molecules responsible for the 850 nm absorption, which is not observed when the 800 nm absorbing Bchl is selectively removed from these complexes. FT Raman spectra of LH2 complexes from Rb. sphaeroides show that the strength of the hydrogen bond between the 850 nm absorbing Bchl bound to the alpha polypeptide and the tyrosine alpha(45) depends precisely on the chemical nature of the bound carotenoid. These results suggest that the variable extremity of the carotenoid is embedded in these LH2 complexes, lying close to the interacting Bchl molecules. In the LH2 from Rhodopseudomonas acidophila, the equivalent part of the rhodopin glucoside, which bears the glucose group, lies close to the amino terminal of the antenna polypeptide. This contrast suggests that the structure of the carotenoid binding site in LH2 complexes strongly depends on the bacterial species and/or on the chemical nature of the bound carotenoid.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号