Integrin beta and receptor for activated protein kinase C are involved in the cell entry of Bombyx mori cypovirus |
| |
Authors: | Zhang Yiling Cao Guangli Zhu Liyuan Chen Fei Zar Mian Sahib Wang Simei Hu Xiaolong Wei Yuhong Xue Renyu Gong Chengliang |
| |
Affiliation: | 1.School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People’s Republic of China ;3.National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren’ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People’s Republic of China ; |
| |
Abstract: | Receptor-mediated endocytosis using a β1 integrin-dependent internalization was considered as the primary mechanism for the initiation of mammalian reovirus infection. Bombyx mori cypovirus (BmCPV) is a member of Reoviridae family which mainly infects the midgut epithelium of silkworm; the cell entry of BmCPV is poorly explored. In this study, co-immunoprecipitation (Co-IP), virus overlay protein binding assay (VOPBA), and BmCPV-protein interaction on the polyvinylidene difluoride membrane (BmCPV-PI-PVDF) methods were employed to screen the interacting proteins of BmCPV, and several proteins including integrin beta and receptor for activated protein kinase C (RACK1) were identified as the candidate interacting proteins for establishing the infection of BmCPV. The infectivity of BmCPV was investigated in vivo and in vitro by RNA interference (RNAi) and antibody blocking methods, and the results showed that the infectivity of BmCPV was significantly reduced by either small interfering RNA-mediated silencing of integrin beta and RACK1 or antibody blocking of integrin beta and RACK1. The expression level of integrin beta or RACK1 is not the highest in the silkworm midgut which is a principal target tissue of BmCPV, suggesting that the molecules other than integrin beta or RACK1 might play a key role in determining the tissue tropism of BmCPV infection. The establishment of BmCPV infection depends on other factors, and these factors interacted with integrin beta and RACK1 to form receptor complex for the cell entry of BmCPV. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|