首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The MprB Extracytoplasmic Domain Negatively Regulates Activation of the Mycobacterium tuberculosis MprAB Two-Component System
Authors:Daniel J Bretl  Tarin M Bigley  Scott S Terhune  Thomas C Zahrt
Institution:aDepartment of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA;bCenter for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA;cBiotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
Abstract:Mycobacterium tuberculosis is an acid-fast pathogen of humans and the etiological agent of tuberculosis (TB). It is estimated that one-third of the world''s population is latently (persistently) infected with M. tuberculosis. M. tuberculosis persistence is regulated, in part, by the MprAB two-component signal transduction system, which is activated by and mediates resistance to cell envelope stress. Here we identify MprAB as part of an evolutionarily conserved cell envelope stress response network and demonstrate that MprAB-mediated signal transduction is negatively regulated by the MprB extracytoplasmic domain (ECD). In particular, we report that deregulated production of the MprB sensor kinase, or of derivatives of this protein, negatively impacts M. tuberculosis growth. The observed growth attenuation is dependent on MprAB-mediated signal transduction and is exacerbated in strains of M. tuberculosis producing an MprB variant lacking its ECD. Interestingly, full-length MprB, and the ECD of MprB specifically, immunoprecipitates the Hsp70 chaperone DnaK in vivo, while overexpression of dnaK inhibits MprAB-mediated signal transduction in M. tuberculosis grown in the absence or presence of cell envelope stress. We propose that under nonstress conditions, or under conditions in which proteins present in the extracytoplasmic space are properly folded, signaling through the MprAB system is inhibited by the MprB ECD. Following exposure to cell envelope stress, proteins present in the extracytoplasmic space become unfolded or misfolded, leading to removal of the ECD-mediated negative regulation of MprB and subsequent activation of MprAB.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号