首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Scaling of processes shaping the clonal dynamics and genetic mosaic of seagrasses through temporal genetic monitoring
Authors:R Becheler  E Benkara  Y Moalic  C Hily  S Arnaud-Haond
Institution:1.Institut Français de Recherche sur la MER (IFREMER)-Département ‘Etude des Ecosystèmes Profonds''- DEEP, Centre de Brest, Plouzané Cedex, France;2.Institut Universitaire Européen de la MER (IUEM)-Laboratoire des sciences de l''Environnement Marin, Plouzanè, France
Abstract:Theoretically, the dynamics of clonal and genetic diversities of clonal plant populations are strongly influenced by the competition among clones and rate of seedling recruitment, but little empirical assessment has been made of such dynamics through temporal genetic surveys. We aimed to quantify 3 years of evolution in the clonal and genetic composition of Zostera marina meadows, comparing parameters describing clonal architecture and genetic diversity at nine microsatellite markers. Variations in clonal structure revealed a decrease in the evenness of ramet distribution among genets. This illustrates the increasing dominance of some clonal lineages (multilocus lineages, MLLs) in populations. Despite the persistence of these MLLs over time, genetic differentiation was much stronger in time than in space, at the local scale. Contrastingly with the short-term evolution of clonal architecture, the patterns of genetic structure and genetic diversity sensu stricto (that is, heterozygosity and allelic richness) were stable in time. These results suggest the coexistence of (i) a fine grained (at the scale of a 20 × 30 m quadrat) stable core of persistent genets originating from an initial seedling recruitment and developing spatial dominance through clonal elongation; and (ii) a local (at the scale of the meadow) pool of transient genets subjected to annual turnover. This simultaneous occurrence of initial and repeated recruitment strategies highlights the different spatial scales at which distinct evolutionary drivers and mating systems (clonal competition, clonal growth, propagule dispersal and so on) operate to shape the dynamics of populations and the evolution of polymorphism in space and time.
Keywords:clonality  seagrass  spatio-temporal genetic structure    Zostera marina
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号