首页 | 本学科首页   官方微博 | 高级检索  
   检索      


mPGES-1 null mice are resistant to bleomycin-induced skin fibrosis
Authors:Matthew R McCann  Roxana Monemdjou  Parisa Ghassemi-Kakroodi  Hassan Fahmi  Gemma Perez  Shangxi Liu  Xu Shi-wen  Sunil K Parapuram  Fumiaki Kojima  Christopher P Denton  David J Abraham  Johanne Martel-Pelletier  Leslie J Crofford  Andrew Leask  Mohit Kapoor
Institution:Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CR-CHUM) and Department of Medicine, University of Montreal, 1560 Rue Sherbrooke Est, Montréal, Québec, H2L 4M1, Canada. mohit.kapoor.chum@ssss.gouv.qc.ca.
Abstract:

Introduction

Microsomal prostaglandin E2 synthase-1 (mPGES-1) is an inducible enzyme that acts downstream of cyclooxygenase (COX) to specifically catalyze the conversion of prostaglandin (PG) H2 to PGE2. mPGES-1 plays a key role in inflammation, pain and arthritis; however, the role of mPGES-1 in fibrogenesis is largely unknown. Herein, we examine the role of mPGES-1 in a mouse model of skin scleroderma using mice deficient in mPGES-1.

Methods

Wild type (WT) and mPGES-1 null mice were subjected to the bleomycin model of cutaneous skin scleroderma. mPGES-1 expressions in scleroderma fibroblasts and in fibroblasts derived from bleomycin-exposed mice were assessed by Western blot analysis. Degree of fibrosis, dermal thickness, inflammation, collagen content and the number of α-smooth muscle actin (α-SMA)-positive cells were determined by histological analyses. The quantity of the collagen-specific amino acid hydroxyproline was also measured.

Results

Compared to normal skin fibroblasts, mPGES-1 protein expression was elevated in systemic sclerosis (SSc) fibroblasts and in bleomycin-exposed mice. Compared to WT mice, mPGES-1-null mice were resistant to bleomycin-induced inflammation, cutaneous thickening, collagen production and myofibroblast formation.

Conclusions

mPGES-1 expression is required for bleomycin-induced skin fibrogenesis. Inhibition of mPGES-1 may be a viable method to alleviate the development of cutaneous sclerosis and is a potential therapeutic target to control the onset of fibrogenesis.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号