首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Membrane fusion by proline-rich Rz1 lipoprotein, the bacteriophage lambda Rz1 gene product.
Authors:K Bryl  S Kedzierska  M Laskowska  A Taylor
Institution:Department of Physics and Biophysics, Warmia and Masurian University in Olsztyn, Olsztyn, Poland. kris@moskit.uwm.edu
Abstract:The fusogenic properties of Rz1, the proline-rich lipoprotein that is the bacteriophage lambda Rz1 gene product, were studied. Light scattering was used to monitor Rz1-induced aggregation of artificial neutral (dipalmitoylphosphatidylcholine/cholesterol) and negatively charged (dipalmitoylphosphatidylcholine/cholesterol/dioleoylphosphatidylserin e) liposomes. Fluorescence assays the resonance energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine and N-(lissamine rhodamine B sulfonyl)dihexadecanol-sn-glycero-3-phosphoethanolamine lipid fluorescent probes, as well as fluorescent complex formation between terbium ions and dipicolinic acid encapsulated in two liposome populations and calcein fluorescence] were used to monitor Rz1-induced lipid mixing, contents mixing and leakage of neutral and negatively charged liposomes. The results demonstrated that Rz1 caused adhesion of neutral and negatively charged liposomes with concomitant lipid mixing; membrane distortion, leading to the fusion of liposomes and hence their internal content mixing; and local destruction of the membrane accompanied by leakage of the liposome contents. The use of artificial membranes showed that Rz1 induced the fusion of membranes devoid of any proteins. This might mean that the proline stretch of Rz1 allowed interaction with membrane lipids. It is suggested that Rz1-induced liposome fusion was mediated primarily by the generation of local perturbation in the bilayer lipid membrane and to a lesser extent by electrostatic forces.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号