首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The Influence of Hindered Transport on the Development of Platelet Thrombi Under Flow
Authors:Karin Leiderman  Aaron L Fogelson
Institution:1. Applied Mathematics Unit, School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
2. Departments of Mathematics and Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA
Abstract:Vascular injury triggers two intertwined processes, platelet deposition and coagulation, and can lead to the formation of an intravascular clot (thrombus) that may grow to occlude the vessel. Formation of the thrombus involves complex biochemical, biophysical, and biomechanical interactions that are also dynamic and spatially-distributed, and occur on multiple spatial and temporal scales. We previously developed a spatial-temporal mathematical model of these interactions and looked at the interplay between physical factors (flow, transport to the clot, platelet distribution within the blood) and biochemical ones in determining the growth of the clot. Here, we extend this model to include reduction of the advection and diffusion of the coagulation proteins in regions of the clot with high platelet number density. The effect of this reduction, in conjunction with limitations on fluid and platelet transport through dense regions of the clot can be profound. We found that hindered transport leads to the formation of smaller and denser clots compared to the case with no protein hindrance. The limitation on protein transport confines the important activating complexes to small regions in the interior of the thrombus and greatly reduces the supply of substrates to these complexes. Ultimately, this decreases the rate and amount of thrombin production and leads to greatly slowed growth and smaller thrombus size. Our results suggest a possible physical mechanism for limiting thrombus growth.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号