首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evidence that both protium and deuterium undergo significant tunneling in the reaction catalyzed by bovine serum amine oxidase
Authors:K L Grant  J P Klinman
Institution:Department of Chemistry, University of California, Berkeley 94720.
Abstract:The magnitudes of primary and secondary H/T and D/T kinetic isotope effects have been measured in the bovine serum amine oxidase catalyzed oxidation of benzylamine from 0 to 45 degrees C. Secondary H/T and D/T kinetic effects are small and in the range anticipated from equilibrium isotope effects; Arrhenius preexponential factors (AH/AT and AD/AT) determined from the temperature dependence of isotope effects also indicate semiclassical behavior. By contrast, primary H/T and D/T isotope effects, 35.2 +/- 0.8 and 3.07 +/- 0.07, respectively, at 25 degrees C, are larger than semiclassical values and give anomalously low preexponential factor ratios, AH/AT = 0.12 +/- 0.04 and AD/AT = 0.51 +/- 0.10. Stopped-flow studies indicate similar isotope effects on cofactor reduction as seen in the steady state, consistent with a single rate-limiting C-H bond cleavage step for Vmax/Km. The comparison of primary and secondary isotope effects allows us to rule out appreciable coupling between the primary and secondary hydrogens at C-1 of the substrate. From the properties of primary isotope effects, we conclude that both protium and deuterium undergo significant tunneling in the course of substrate oxidation. These findings represent the first example of quantum mechanical effects in an enzyme-catalyzed proton abstraction reaction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号