首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Response of photosynthesis of different plant functional types to environmental changes along Northeast China Transect
Authors:G Jiang  Haiping Tang  M Yu  Ming Dong  Xinshi Zhang
Institution:(1) Laboratory of Quantitative Vegetation Ecology, Institute of Botany, the Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, 100093 Beijing, P.R. China, e-mail: jgm@ht.rol.cn.net; Fax 86–010–62590843, CN
Abstract:Net photosynthesis (Pn), transpiration (E), stomatal conductance (gs), internal CO2 concentration (Ci), and water use efficiency (WUE) were examined on 215 species from eight plant functional types (PFTs) along a precipitation gradient in northeast China (the Northeast China Transect, or NECT). Among the eight PFTs, meadow steppe grasses had the highest rates of net photosynthesis and forest grasses the lowest and the following order of Pn was noted: meadow steppe grasses >typical steppe grasses >steppe shrubs >desert grasses >forest trees >forest shrubs >desert shrubs >forest grasses (P<0.05). Transpiration tended to be the highest in the steppe grasses and lowest in forest shrubs. Transpiration also decreased rapidly with the appearance of C3 desert species at the desert end. The forest tree PFT had lower Pn, E, gs than the steppe PFTs, whereas WUE values were somewhat greater in the forest tree PFT than the desert shrubs and grasses. Low Ci values along the steppe section (from 400 to 1100 km, east to west) indicated the presence of C4 species. Of all the PFTs, only shrubs and herbs were noted at all points along the transect. No clear relationship between Pn, E, gs, WUE of herb and shrub PFTs and annual precipitation was noted – low values were found at both the high and low precipitation ends of the transect. Highest values were noted when precipitation was intermediate. Received: 28 October 1998 / Accepted: 10 May 1999
Keywords:  Photosynthesis  Plant functional types  Transpiration  Stomatal conductance  Water use efficiency
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号