首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetic model to describe the morphological evolution of filamentous fungi during their early stages of growth in the standard submerged and microparticle‐enhanced cultivations
Authors:Anna Kowalska  Tomasz Boruta  Marcin Bizukojc
Abstract:Biosynthesis of metabolites and enzymes by filamentous fungi depends on their morphological form in submerged cultures. However, their early stages of growth lasting approximately 24 h, from the introduction of spores to the medium until the formation of stable morphological forms, such as clumps or pellets, have rarely been the objects of experimental and modeling studies. Microparticle‐enhanced cultivation (MPEC) has been applied only to a few fungal species, mainly Aspergilli. Therefore, the objective of this work was to formulate the kinetic model to describe the early stages of the fungal evolution in the standard cultivation and MPEC for Aspergillus terreus, Chaetomium globosum, Penicillium rubens, and Mucor racemosus. These fungi exhibit various mechanisms of agglomerates formation in submerged cultures. The experiments were performed in batch shake flasks (parameters identification) and a stirred tank bioreactor (model verification). In the balance equation for fungal cells, the mean projected area of hyphal objects measured by the digital analysis of microscopic images was used as the dependent variable. The analysis of the experimental data and model solution revealed that the effect of the microparticles (aluminum oxide at 6 g L?1) in MPEC toward the studied filamentous fungi was to the high extent species dependent. This effect was most evident in the case of spore coagulative A. terreus and noncoagulative M. racemosus.
Keywords:bioreactor  filamentous fungi  kinetic modeling  microparticle‐enhanced cultivation  morphology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号