首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Design and synthesis of a stereodynamic catalyst with reversal of selectivity by enantioselective self‐inhibition
Authors:Jan Felix Scholtes  Oliver Trapp
Abstract:Chirality plays a pivotal role in an uncountable number of biological processes, and nature has developed intriguing mechanisms to maintain this state of enantiopurity. The strive for a deeper understanding of the different elements that constitute such self‐sustaining systems on a molecular level has sparked great interest in the studies of autoinductive and amplifying enantioselective reactions. The design of these reactions remains highly challenging; however, the development of generally applicable principles promises to have a considerable impact on research of catalyst design and other adjacent fields in the future. Here, we report the realization of an autoinductive, enantioselective self‐inhibiting hydrogenation reaction. Development of a stereodynamic catalyst with chiral sensing abilities allowed for a chiral reaction product to interact with the catalyst and change its selectivity in order to suppress its formation, which caused a reversal of selectivity over time.
Keywords:asymmetric catalysis  autoinduction  chirality transfer  ligand design  noncovalent interaction  tropos ligands
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号