首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Involvement of sulfhydryl groups in the inhibition of brain (Na+ + K+)-ATPase by pyrithiamin
Authors:T Matsuda  H Iwata  J R Cooper
Abstract:Brain (Na+ + K+)-ATPase was protected by low concentrations of GSH from the inhibitory effect of pyrithiamin. The possible involvement of sulfhydryl groups in the inhibition was then studied by comparing the effect of pyrithiamin with that of N-ethylmaleimide on the enzyme. The treatment of rat brain (Na+ + K+)-ATPase with thesee inhibitors caused a significant decrease in reactivity of the enzyme to N-ethyl3H]maleimide. N-Ethylmaleimide, like pyrithiamin, inhibited the partial reactions of (Na+ + K+)-ATPase system in parallel with the inhibition of the overall reaction. An SDS-polyacrylamide gel electrophoresis procedure indicated that pyrithiamin and N-ethylmaleimide inhibited Na+-dependent phosphorylation of the alpha(+) form of rat brain (Na+ + K+)-ATPase more than that of alpha, though the selectivity for the alpha(+) seemed to be higher with the former inhibitor than in the latter. The treatment also decreased sensitivity of the enzyme to ouabain inhibition. However, pyrithiamin- and N-ethylmaleimide-induced inactivations of the enzyme differed in the efficacy of GSH for protection and in the effect of the kind of ligands present during the reaction. Furthermore, pyrithiamin did not appear to interact directly with sulfhydryl groups, but caused the formation of disulfide in bovine brain (Na+ + K+)-ATPase. In contrast to N-ethylmaleimide, pyrithiamin did not affect the sulfhydryl-enzymes such as alcohol dehydrogenase and L-alanine dehydrogenase. It is concluded that pyrithiamin modifies the functional sulfhydryl groups of brain (Na+ + K+)-ATPase in a way different from N-ethylmaleimide and causes a structural change and inactivation of the enzyme.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号