首页 | 本学科首页   官方微博 | 高级检索  
     


Biogenesis of plasma membrane glycoproteins. Tracer kinetic study of two rat liver plasma membrane glycoproteins in vivo
Authors:J Elovson
Abstract:Antibodies to purified nucleotide pyrophosphatase (NPPase) and dipeptidyl peptidase IV (DPP IV) were used to study the biogenesis of these rat liver plasma membrane glycoproteins in vivo. Following injection of tritiated leucine, the radioactivity in NPPase and DPP IV decayed at markedly different rates in the plasma membrane, with apparent half-lives of about 1 and 5 days, respectively. In short term experiments, labeling of total plasma membrane proteins was rapid and insensitive to colchicine, while labeling of both NPPase and DPP IV showed a lag of about 15 min, followed by colchcine-sensitive/cycloheximide-insensitive increases to half-maximal and maximal values at about 1 and 2 h, respectively. A peak of labeled DPP IV in rough microsomes at 15 min showed increased mobility on polyacrylamide gels and was largely inaccessible to antibodies in intact microsomes, consistent with its being an underglycosylated precursor, exposed on the cisternal side of the rough endoplasmic reticulum. In contrast, the behavior of unlabeled DPP IV in preparations of rough microsomes and Golgi was consistent with its being contributed by contaminating right-side-out plasma membrane vesicles. This conclusion was also necessary to fit the tracer kinetic data to a simple membrane-flow model, which gave precursor pools (1 microgram/g of liver) and fluxes (1 microgram/h/g of liver) for both DPP IV and NPPase which were about 3 orders of magnitude less than those for the synthesis of rat serum albumin. Thus, unlike hepatoma tissue culture cells (Doyle, D., Baumann, H., England, B., Friedman, E., Hou, E., and Tweto, J. (1978) J. Biol. Chem. 253, 967-973), normal rat liver does not contain large amounts of preformed intracellular plasma membrane precursors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号