首页 | 本学科首页   官方微博 | 高级检索  
     


α,β-dicarbonyl reduction by Saccharomycesd-arabinose dehydrogenase
Authors:Barry van Bergen  Rona Strasser  Normand Cyr  John D. Sheppard  Armando Jardim
Affiliation:1. Department of Bioresource Engineering, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9;2. Institute of Parasitology, Macdonald Campus of McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, Quebec, Canada H9X 3V9
Abstract:An α,β-dicarbonyl reductase activity was purified from Saccharomyces cerevisiae and identified as the cytosolic enzyme d-Arabinose dehydrogenase (ARA1) by MALDI-TOF/TOF. Size exclusion chromatography analysis of recombinant Ara1p revealed that this protein formed a homodimer. Ara1p catalyzed the reduction of the reactive α,β-dicarbonyl compounds methylglyoxal, diacetyl, and pentanedione in a NADPH dependant manner. Ara1p had apparent Km values of ∼ 14 mM, 7 mM and 4 mM for methylglyoxal, diacetyl and pentanedione respectively, with corresponding turnover rates of 4.4, 6.9 and 5.9 s− 1 at pH 7.0. pH profiling showed that Ara1p had a pH optimum of 4.5 for the diacetyl reduction reaction. Ara1p also catalyzed the NADP+ dependant oxidation of acetoin; however this back reaction only occurred at alkaline pH values. That Ara1p was important for degradation of α,β-dicarbonyl substrates was further supported by the observation that ara1-Δ knockout yeast mutants exhibited a decreased growth rate phenotype in media containing diacetyl.
Keywords:d-Arabinose   ARA1   Dehydrogenase   Dicarbonyl   Diacetyl   ARA1p
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号