首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements
Authors:G.T. Macfarlane  G.R. Gibson  E. Beatty  J.H. Cummings
Affiliation:Medical Research Council, Dunn Clinical Nutrition Centre, Cambridge, UK
Abstract:Abstract The importance of protein breakdown and amino acid fermentation in the overall economy of the large intestine has not been quantitated. We have therefore measured the production of branched chain-fatty acids (BCFA) both in vitro and in vivo in order to estimate the contribution of protein to fermentation.
In vitro batch-culture studies using human faecal inocula showed that short-chain fatty acids (SCFA) were the principal end products formed during the degradation of protein by human colonic bacteria. Approximately 30% of the protein broken down was converted to SCFA. Branched-chain fatty acids (BCFA) constituted 16% of the SCFA produced from bovine serum albumin and 21% of the SCFA generated when casein was the substrate. BCFA concentrations in gut contents taken from the human proximal and distal colons were on average, 4.6 and 6.3 mmol kg−1 respectively, corresponding to 3.4% and 7.5% of the total SCFA. These results suggest that protein fermentation could potentially account for about 17% of the SCFA found in the caecum, and 38% of the SCFA produced in the sigmoid/rectum. Measurements of BCFA in portal and arterial blood taken from individuals undergoing emergency surgery indicated that net production of BCFA by the gut microflora was in the region of 11.1 mmol day−1, which would require the breakdown of about 12 g of protein. These data highlight the role of protein in the colon and may explain why many colonic diseases affect mainly the distal bowel.
Keywords:Branched-chain fatty acids    Short-chain fatty acids    Protein breakdown    Fermentation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号