Measurement of microstructural strain in cortical bone |
| |
Authors: | Nicolella Daniel P Bonewald Lynda F Moravits Donald E Lankford James |
| |
Affiliation: | Mechanical and Materials Engineering Division, Southwest Research Institute, San Antonio, TX 78238, USA. dnicolella@swri.org |
| |
Abstract: | It is well known that mechanical factors affect bone remodeling such that increased mechanical demand results in net bone formation, whereas decreased demand results in net bone resorption. Current theories suggest that bone modeling and remodeling is controlled at the cellular level through signals mediated by osteocytes. The objective of this study was to investigate how macroscopically applied bone strains similar in magnitude to those that occur in vivo are manifest at the microscopic level in the bone matrix. Using a digital image correlation strain measurement technique, experimentally determined bone matrix strains around osteocyte lacuna resulting from macroscopic strains of approximately 2,000 microstrain (0.2%) reach levels of over 30,000 microstrain (3%) over fifteen times greater than the applied macroscopic strain. Strain patterns were highly heterogeneous and in some locations similar to observed microdamage around osteocyte lacuna indicating the resulting strains may represent the precursors to microdamage. This information may lead to a better understanding of how bone cells are affected by whole bone functional loading. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|