首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Interrelation between Ethylene and Carbon Dioxide in Relation to Respiration and Adenylate Content in the Pre-Germination Period of Cocklebur Seeds
Authors:Esashi  Yohji; Fuwa  Noritoshi; Kurota  Akiko; Oota  Hiroshi; Abe  Michikazu
Institution:Department of Biological Science, Tohoku University Kawauchi, Sendai 980, Japan
Abstract:Effects of C2H4 and CO2 on respiration of pre-soaked upper cocklebur(Xanthium pennsylvanicum Wallr.) seeds during a pre-germinationperiod were examined in relation to effects of the two gaseson germination. At 33?C, cocklebur seed germination was greatlystimulated. This high temperature-stimulated germination wasseverely inhibited by C2H4, but not by CO2, although both gasesstimulated germination at 23?C. C2H4 promoted seed respirationat 23?C, but its promotive effect decreases with increasingtemperature and disappeared at about 35?C, while CO2 stimulatedrespiration regardless of temperature. CO2 augmented the operationof the CN-sensitive, cytochrome path (CP) regardless of temperature,resulting in an increase in the ratio of the CP flux to a CN-resistant,alternative path (AP) flux. On the other hand, C2H4 augmentedthe operation of both paths, particularly of the AP, at 23?C,where it promoted germination. However, at 33?C where germinationis suppressed by C2H4, C2H4 preferentially stimulated respirationvia the AP, thus leading to an extremely high ratio of AP toCP. The inhibitory effect of C2H4 on germination at 33?C disappearedcompletely in enriched O2, under which conditions CP is knownto be augmented. At 23?C, CO2 and C2H4 acted independently incontrolling seed respiration, but they were antagonistic at33?C. The independent action appeared when the AP flux was verylow relative to the CP flux, while the antagonism appeared whenthe AP flux had risen. This differential action of the two gasesat different temperatures was also observed in the ATP level,adenylate pool size and energy charge of the axial tissues.These results suggest that the germination-controlling actionsof both CO2 and C2H4 are fundamentally manifested through themodification of respiratory systems. However, the germination-inhibitingeffect of C2H4 at 33 ?C was not removed by inhibitors of AP,and there was little difference in the adenylate compounds betweenthe C2H4-treated and non-treated seeds at 33?C. Therefore, thephysiological action of C2H4 can not be explained only in termsof regulation of the respiratory system. (Received January 24, 1986; Accepted November 17, 1986)
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号