首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expression of the unconventional myosin Myo1c alters sodium transport in M1 collecting duct cells
Authors:Wagner Mark C  Blazer-Yost Bonnie L  Boyd-White Judy  Srirangam Anjaiah  Pennington Janice  Bennett Stacy
Institution:Department of Medicine/Nephrology, Indiana University School of Medicine, 950 West Walnut St., R2-202, Indianapolis, Indiana 46202, USA. wagnerm@iupui.edu
Abstract:Epithelial cells rely on proper targeting of cellular components to perform their physiological function. This dynamic process utilizes the cytoskeleton and involves movement of vesicles to and from the plasma membrane, thus traversing the actin cortical cytoskeleton. Studies support both direct interaction of actin with channels and an indirect mechanism whereby actin may serve as a track in the final delivery of the channel to the plasma membrane. Actin-dependent processes are often mediated via a member of the myosin family of proteins. Myosin I family members have been implicated in multiple cellular events occurring at the plasma membrane. In these studies, we investigated the function of the unconventional myosin I Myo1c in the M1 mouse collecting duct cell line. Myo1c was observed to be concentrated at or near the plasma membrane, often in discrete membrane domains. To address the possible role of Myo1c in channel regulation, we expressed a truncated Myo1c, lacking ATP and actin domains, in M1 cells and compared electrophysiological responses to control M1 cells, M1 cells expressing the empty vector, and M1 cells expressing the full-length Myo1c construct. Interestingly, cells expressing the Myo1c constructs had modulated antidiuretic hormone (ADH)-stimulated short-circuit current and showed little inhibition of short-circuit current with amiloride addition. Evaluation of enhanced green fluorescent protein-Myo1c constructs supports the importance of the IQ region in targeting the Myo1c to its respective cellular domain. These data are consistent with Myo1c participating in the regulation of the Na+ channel after ADH stimulation. actin; cytoskeleton; ion channel; kidney
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号