首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nonlinear time-series modeling of vole population fluctuations
Authors:Peter Turchin
Institution:1. Department of Ecology and Evolutionary Biology, University of Connecticut, 06269-3042, Storrs, CT, USA
Abstract:A central goal of population ecology is to understand and predict fluctuations in population numbers. Until recently, much of the debate focused on the issue of population regulation by density-dependent factors. In this paper, I describe an approach to nonlinear modeling of time-series data that is designed to go beyond this question by investigating the possibility of complex population dynamics, characterized by lags in regulation and periodic or chaotic oscillations. The questions motivating this approach are: what are relative contributions of endogenous vs. exogenous components of dynamics? Is the irregular component in fluctuations entirely due to exogenous noise, or do nonlinearities contribute to it, too? I describe the philosophy and the technical details of the nonlinear modeling approach, and then apply it to a collection of time-series data on vole population fluctuations in northern Europe. The results suggest that population dynamics of European voles undergo a latitudinal shift from stability to chaos. Dynamics in northern Fennoscandia are characterized by positive Lyapunov exponent estimates, and a high degree of short-term (one year ahead) predictability, suggesting a strong endogenous component. In more southerly populations estimated Lyapunov exponents are negative, and there is no one-step ahead predictability, suggesting that fluctuations are driven by exogenous factors.
Keywords:chaos  nonlinear dynamics  population oscillations  stability  time-series analysis  vole
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号