首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cross-talk between TCR and CCR7 signaling sets a temporal threshold for enhanced T lymphocyte migration
Authors:Schaeuble Karin  Hauser Mark A  Singer Eva  Groettrup Marcus  Legler Daniel F
Institution:Biotechnology Institute Thurgau, University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
Abstract:Lymphocyte homing to, and motility within, lymph nodes is regulated by the chemokine receptor CCR7 and its two ligands CCL19 and CCL21. There, lymphocytes are exposed to a number of extracellular stimuli that influence cellular functions and determine the cell fate. In this study, we assessed the effect of TCR engagement on CCR7-mediated cell migration. We found that long-term TCR triggering of freshly isolated human T cells through CD3/CD28 attenuated CCR7-driven chemotaxis, whereas short-term activation significantly enhanced CCR7-mediated, but not CXCR4-mediated, migration efficiency. Short-term activation most prominently enhanced the migratory response of naive T cells of both CD4 and CD8 subsets. We identified distinct roles for Src family kinases in modulating CCR7-mediated T cell migration. We provide evidence that Fyn, together with Ca(2+)-independent protein kinase C isoforms, kept the migratory response of naive T cells toward CCL21 at a low level. In nonactivated T cells, CCR7 triggering induced a Fyn-dependent phosphorylation of the inhibitory Tyr505 of Lck. Inhibiting Fyn in these nonactivated T cells prevented the negative regulation of Lck and facilitated high CCR7-driven T cell chemotaxis. Moreover, we found that the enhanced migration of short-term activated T cells was accompanied by a synergistic, Src-dependent activation of the adaptor molecule linker for activation of T cells. Collectively, we characterize a cross-talk between the TCR and CCR7 and provide mechanistic evidence that the activation status of T cells controls lymphocyte motility and sets a threshold for their migratory response.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号