首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress
Authors:Jamel Manai  Houda Gouia  Francisco J Corpas
Institution:1. Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain;2. Faculty of Sciences of Tunisia, University Tunis El Manar, Tunis, Tunisia
Abstract:The nicotinamide adenine dinucleotide phosphate (NADPH) and reduced glutathione (GSH) molecules play important roles in the redox homeostasis of plant cells. Using tomato (Solanum lycopersicum) plants grown with 120 mM NaCl, we studied the redox state of NADPH and GSH as well as ascorbate, nitric oxide (NO) and S-nitrosoglutathione (GSNO) content and the activity of the principal enzymes involved in the metabolism of these molecules in roots. Salinity caused a significant reduction in growth parameters and an increase in oxidative parameters such as lipid peroxidation and protein oxidation. Salinity also led to an overall decrease in the content of these redox molecules and in the enzymatic activities of the main NADPH-generating dehydrogenases, S-nitrosoglutathione reductase and catalase. However, NO content as well as gluthahione reductase and glutathione peroxidase activity increased under salinity stress. These findings indicate that salinity drastically affects redox and NO homeostasis in tomato roots. In our view, these molecules, which show the interaction between ROS and RNS metabolisms, could be excellent parameters for evaluating the physiological conditions of plants under adverse stress conditions.
Keywords:NADP-dehydrogenase  GSH  Nitric oxide  S-nitrosoglutathione  Salinity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号